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SUMMARY

The present paper reviews the important contributions of Ian MacNeill to the theory and methodology of
change-point analysis and environmental statistics. The review concentrates on four areas of change-point
analysis: sequences of independent random variables; linear regression models with independent as well as
serially correlated random errors; regression models with continuity constraints and spatial models of
change-points. Copyright # 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Ian MacNeill made important contributions to the development of change-point methods and
discussed their applications to many other branches of knowledge, especially to Environmetrics
and Biostatistics. His interest in applications led him to play a signi®cant role in the creation of
The International Environmetrics Society (TIES) and its journal Environmetrics. Due to space
limitations, this article is not intended to cover all aspects of his extensive work but to focus only
on his theoretical contributions to the change point problem. His pursuits for wide ranging
applications of this methodology including environmetrics and biostatistics may be found in the
selected list of his published works: MacNeill (1980, 1982, 1993, 1995), Tang andMacNeill (1989,
1990, 1992), MacNeill et al. (1991, 1994, 1995a, 1995b) and MacNeill and Mao (1993, 1997).

The change-point problem was formally introduced by Page (1955) where the celebrated
CUSUM procedure was proposed to test for a change in a parameter occurring at an unknown
time-point. While the problem was originally formulated to improve the Shewhart's 3-sigma
control chart procedures in quality control, today, the methods have applications in all areas of
science and technology.

The approaches adapted for solving change-point problems include maximum likelihood,
Bayesian, Bayes-type, non-parametric, as well as decision theoretic procedures. Soon after the
problem was introduced by Page (1955), Quandt (1958, 1960) derived the likelihood ratio statistic
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to test for change in the parameters of simple and general linear regression models. The
distributions of the test statistics derived by Quandt, either in small samples or asymptotic
approximations, were not available.

Cherno� and Zacks (1964) studied the problem of estimating the current mean of a sequence of
independent normal random variables whose means are subjected to random amounts of
changes at random epochs. As a side problem they studied in this celebrated paper the following
testing problem. Let Y1;Y2; . . . ;Yn be independent random variables such that Yi � N�mi; s2�,
i � 1; . . . ; n. Consider the null hypothesis H0 : m1 � � � � � mn � m0;ÿ15 m0 51 versus the
composite alternative

Ha : m1 � � � � � m� � m0
m��1 � � � � � mn � m0 � d;

� 2 f1; 2; . . . ; n ÿ 1g; d4 0; ÿ15 m0 51:

Using a Bayesian approach and assuming m0 to be unknown, Cherno� and Zacks derived the test
statistic

T1n �
Xnÿ1
j�1

p�j�
Xn
i�j�1
�Yi ÿ �Yn�; �1�

where p( j) are prior probabilities assigned to the change-point �, and �Yn � 1=n�Sn
i�1Yi�. They

also showed that in the simpler case, where p�j� � 1=�n ÿ 1� and m0 � 0, the test statistic, T1n ,
reduces to

T1n �
Xnÿ1
j�1

Xn
i�j�1

Yi �
Xn
j�1
�j ÿ 1�Yj: �2�

It is very simple to derive the null distribution of T1n and its power function under the assumption
of normality. Cherno� and Zacks (1964) also showed that T1n compares favorably to Page's
CUSUM test, when the changes d are small. Kander and Zacks (1966) generalized the results of
Cherno� and Zacks to the case where the distributions of Yi�i � 1; . . . ; n� are of the exponential
type, with density functions

f�x; y� � h�x�expfc1�y�U�x� � c2�y�g; �3�

where c1(y) and c2(y) have continuous derivatives and c01�y�4 0. For testing the simple
hypothesis

H0 : y1 � � � � � yn � y0 �known�;

against

H1 : y1 � � � � � y� � y0
y��1 � � � � � yn � y0 � d

� 2 f1; . . . ; n ÿ 1g; d4 0
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they arrived at the test statistic (2), in which Yi � U�Xi�, i � 1; . . . ; n. Kander and Zacks
established the asymptotic normality of T1n but showed that the weak convergence to a normal
distribution is slow. They suggested an Edgeworth expansion approximation for the distribution
of T1n , when n is not very large.

Gardner (1969) studied the testing problem for normal random variables, when the alternative
hypothesis is two-sided, i.e. d 6� 0. Using the Cherno� and Zacks approach he derived the statistic

Qn �
Xnÿ1
j�1

p�j�
Xn
i�j�1
�Yi ÿ �Yn�2: �4�

Gardner has shown that under H0

6n

n2 ÿ 1
Qn �

Xnÿ1
k�1

lkU
2
k;

where U1; . . . ;Unÿ1 are i.i.d. standard normal random variables, and

lk �
6n2

p2�n2 ÿ 1�k2
2n

kp
cos

kp
2n

� �� �ÿ2
; �5�

k � 1; . . . ; n ÿ 1. Thus.

6n

n2 ÿ 1
Qn!d

6

p2
X1
k�1

1

k2
U

2
k; �6�

as n!1. Gardner (1969) did not derive the asymptotic distribution of his test statistic under the
alternative hypothesis. Power computations were done by simulations. The ®rst study which
derived the asymptotic distribution of a test statistic similar to (4) was that of MacNeill (1974).
MacNeill used methods of weak convergence to approximate the distribution of the test statistic,
as n!1, by the distribution of a functional of a Brownian process. The work of MacNeill will
be described in Section 2. Section 3 reviews the contributions of MacNeill to change-points in
regression models. These results are of special value for environmetrics and chemometrics.
Section 4 reviews MacNeill's studies on change-point analysis for time series with serial correla-
tions. Section 5 is devoted to models with continuity constraints. In Section 6 we give a brief
account of the spatial analog. As will be shown, the approach of MacNeill to the change-point
analysis is basically a Bayesian approach, as in Cherno� and Zacks (1964). There is an alternative
approach, namely the maximum likelihood approach. The asymptotic theory of the maximum
likelihood approach is given in the book of CsoÈ rgoÈ and HorvaÂ th (1997).

2. CHANGE-POINT METHODS FOR SEQUENCES OF RANDOM VARIABLES

In the present section we review the study of MacNeill (1974), which extended that of Kander and
Zacks (1966) to two-sided hypotheses, d 6� 0. Thus, let fXjgnj�1 be a sequence of independent
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random variables having a one-parameter exponential densities (3). Let Yi � U�Xi�. MacNeill
obtained the test statistic

T2n �
Xnÿ1
j�1

p�j�
Xn
i�j�1

�c01�y0�Yi � c02�y0��
�������������
c01�y0�

p
c001�y0�c02�y0� ÿ c01�y0�c002�y0�

" #2

: �7�

The mean and variance of a random variable having a density function (3) are

m�y� � ÿc02�y�
c01�y�

�8�

and

t2�y� � c001�y�c02�y� ÿ c01�y�c002�y�
�c01�y��3

:

Thus, the test statistic T2,n is given by

T2n �
Xnÿ1
j�1

p�j�
Xn
i�j�1

Yi ÿ m�y0�
t�y0�

" #2

: �10�

If the initial value of y0 is unknown, we substitute the MLE (under H0) i.e..

m̂n �
1

n

Xn
i�1

Yi:

Thus, let

T3n �
Xnÿ1
j�1

p�j�
Xn
i�j�1

Yi ÿ �Yn

t�ŷ0�

" #2

: �11�

Let fB�t�; t 2 �0; 1�g denote the standard Brownian motion process (Wiener process) and
fB0�t�; t 2 �0; 1�g denote the standard Brownian bridge (see Karlin and Taylor 1981).

Using weak convergence methods (see Billingsley 1968) MacNeill proved the following
theorems.

Theorem 1. Let c( . ) be a non-negative weight function de®ned on the unit interval [0, 1] such
that

R 1
0 tc�t� dt51. Let fp�j�gnÿ1j�1 be de®ned by

p
n ÿ j

n

� �
�
Z �j�1�=n
j=n

c�t� dt; j � 1; . . . ; n ÿ 1:

Then.

n
ÿ1
T2n!

d
Z 1

0

c�t�B2�t� dt: �12�
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Theorem 2. Let c(t) be a non-negative weight function de®ned on [0, 1] such thatR 1
0 t�1 ÿ t�c�t� dt51. If fp�j=n�gnÿ1j�1 is de®ned by

p
n ÿ j

n

� �
�
Z �2j�1�=2n
�2jÿ1�=2n

c�t� dt;

and

n
ÿ1
T3n!

d
Z 1

0

c�t�B2
0�t� dt: �13�

MacNeill (1974) also studied the asymptotic distribution of T2n under contiguous type
alternatives. Under certain regularity conditions, MacNeill (1974) has shown that:

n
ÿ1
T2n!

d
Z 1

0

c�t��H�t� � B�t��2 dt; �14�

where

H�t� �
Z t

0

fh�1 ÿ s� ÿ h0g ds;

and h is a bounded, Reimann-integrable function on [0, 1].
Next, letting c�t� � a � tk; k4 ÿ 2, MacNeill found quantiles for the distributions of the

stochastic integrals in (12) and (13) by applying the methods of Anderson and Darling (1952) to
Brownian bridge processes.

3. PARAMETER CHANGES IN LINEAR REGRESSION MODELS

MacNeill's contributions to this area of the change-point problem are quite extensive. Included
among them are MacNeill (1978a, 1978b) and Jandhyala and MacNeill (1989, 1991, 1992, 1997).

Consider the linear regression model:

Y � Xbbbbb � EEEEE; �15�
where EEEEE � �e1; e2; . . . ; en�0 � N�0; s2I�, bbbbb0 � �b0; . . . ; bpÿ1� is the vector of regression parameters,
Y0 � �Y1; . . . ;Yn� is the dependent observation vector, and X is the design matrix with

X �
1 x11 . . . x1 pÿ1
..
. ..

. ..
. ..

.

1 xn1 . . . xn pÿ1

264
375:

Jandhyala and MacNeill (1989, 1991) derived the one-sided as well as two-sided Bayes-type
change detection statistics and established the asymptotic distribution theory of the derived
statistics. While the statistics have been derived under the assumption of normality, the
asymptotic theory, however, does not require such an assumption. The alternative hypothesis of
the detection problem was formulated in a very general framework for the purpose of deriving
the statistic and several important special cases follow.
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LetW � �wij�; i � 1; . . . ; n ÿ 1; j � 0; . . . ; p ÿ 1 be the change matrix. The (i, j)th component,
wij is 1 or 0 according to whether or not there is a change in bj between the ith and (i � 1)th time-
points. Also, let D � ��dij��, i � 1; . . . ; n ÿ 1; j � 0; . . . ; p ÿ 1 be a matrix representing the
amounts of changes in the parameters. The null and alternative hypotheses for the two-sided
testing problem then are:

H0 : dij � 0; i � 1; . . . ; n ÿ 1; j � 0; . . . ; p ÿ 1

against

Ha : dij 6� 0; for some i; j:

Let dddddj � �dj0; . . . ; dj� pÿ1�� be the vectors of change quantities �j � 1; . . . ; n ÿ 1�. The derivation of
the two-sided Bayes-type statistic proceeds by assuming the following prior distributions on
bbbbb; ddddd1; . . . ; dddddnÿ1

bbbbb � N�0; t2I�; dddddj � N�0; y2I�; j � 1; . . . ; n ÿ 1;

with bbbbb; ddddd1; . . . ; dddddnÿ1 and EEEEE all distributed independently. The derived statistic is given by:

T4n �
X
fWg

p�W�fY0R
Xpÿ1
i�0

CiC
0
i

 !
RY�; �16�

where p(W) is the prior probability mass function on the collection of change matrices {W} and
where

Ci �

0 0 0 . . . 0
0 x2iw1i 0 . . . 0
0 x3iw1i x3iw2i . . . 0

..

. ..
. ..

.
. . . ..

.

0 xniw1i xniw2i . . . xniwnÿ1 i

2666664

3777775:

Several important special cases of interest follow from the statistic T5n . Suppose only one change
takes place occurring between m and (m � 1), m � 1; . . . ; n ÿ 1 and let p(m) denote the prior on
this unknown change-point. Then, the corresponding statistic is:

T5n �
Xnÿ1
m�1

p�m�Y0RH�m�H0�m�RY; �17�

where the ith row of H(m) is given by H�m�i � �xm0wm0; . . . ; xpÿ1wpÿ1�, i � m � 1; . . . ; n with the
®rst m rows being all identically zero. If one is interested in testing for two-sided changes in all of
the parameters at the unknown change-point, then, one has

T6n �
Xnÿ1
m�1

p�m�Y0RX�m�X0�m�RY; �18�

where X(m) is the design matrix X with the ®rst m rows replaced by zeros.
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The statistic for testing at most one change in the parameter bi alone is given by:

T
�i�
7n �

Xnÿ1
m�1

p�m�Y0RXmiX
0
miRY; �19�

where Xmi is the ith column vector of X with the ®rst m elements replaced by zeros. The one-sided
Bayes-type statistic was derived to be:

T8n �
Xnÿ1
m�1

p�m� Y
0
R
Xpÿ1
j�0

wjXmj

( )
: �20�

The one-sided statistic was derived to incorporate multiple change-points.
The one-sided statistic will be distributed normally for ®nite samples under both null and

alternative hypotheses as long as the error variables are normal. This would be true only
asymptotically when the error variables are non-normal.

Distribution theory for the two-sided statistics is more complicated. While exact distribution of
the two-sided statistic even under the null hypothesis is quite intractable, asymptotic null
distribution theory has been derived and is based on distributions of CrameÂ r von-Mises type
functionals de®ned on partial sum residual processes. The distribution theory, however, requires
that one considers a linear regression model based on regressor functions fi���, i � 0; . . . ; p ÿ 1
de®ned on [0, 1] and with equispaced observations. Simple modi®cations will extend the theory
to cases where the regressor functions may be de®ned on compact subsets of the real line and
where observations are not equispaced. The regression model (15) may be written as

Ynj �
Xpÿ1
i�0

bifi�j=n� � ej; j � 1; . . . ; n: �21�

Under this model, the statistics T7n and T
�i�
8n may respectively be written as:

sÿ2nÿ1T6n �
Xnÿ1
m�1

p�m� 1

s
���
n
p

Xn
k�m�1

f0�k=n��Ynk ÿ Ŷnk�
( )2

� � � �

�
Xnÿ1
m�1

p�m� 1

s
���
n
p

Xn
k�m�1

fpÿ1�k=n��Ynk ÿ Ŷnk�
( )2

; �22�

sÿ2nÿ1T�i�7n �
Xnÿ1
m�1

p�m� 1

s
���
n
p

Xn
k�m�1

fi�k=n��Yni ÿ Ŷni�
( )2

: �23�

Asymptotic distribution theory of both (22) and (23) requires limit processes for sequences of
stochastic processes de®ned on partial sums of weighted regression residuals.

MacNeill (1978a, 1978b) initiated the fundamental work in this direction by considering the
statistic for the case i � 0. Since f0�k=n� � 1, the case i � 0 corresponds to considering partial
sums of unweighted regression residuals.
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MacNeill (1978a) ®rst derived the limit processes for stochastic processes, de®ned by partial
sums of residuals, when the underlying regression functions are polynomial fi�t� � ti; t 2 �0; 1�;
i � 0; . . . ; p ÿ 1, . MacNeill (1978b) extended this result to the case of general linear regression
models. We present below the general result of MacNeill (1978b).

De®ne sequences of partial sums of regression residuals by fSnj; 14 j4 n; n5 1g where

Snj �
Xj
i�1
�Yni ÿ Ŷni�:

Then de®ne sequences of stochastic processes possessing continuous sample paths by

sn1=2yfn�t� � Sn�nt� � �nt ÿ �nt���Yn�nt��1 ÿ Ŷn�nt��1�: �24�

Further, let Xn � ��fi�j=n��, i � 0; . . . ; p ÿ 1; j � 1; . . . ; n be the design matrix and let
lim nÿ1X0nXn � F and also de®ne a bi-linear function g(s, t) by

g�s; t� � f
0�s�Fÿ1f�t� where f

0�s� � �f0�s�; . . . ; fpÿ1�s��:

Then, the limit process for the sequence of stochastic processes fyfn�t�; t 2 �0; 1�g; n5 1 is given by
the following theorem.

Theorem 3. Let fi�t�; t 2 �0; 1�, i � 0; . . . ; p ÿ 1 be continuously di�erentiable on [0, 1]. Then
fyfn �t�; t 2 �0; 1�g converges weakly to the Gaussian process fBf�t�; t 2 �0; 1�g de®ned by

Bf�t� � B�t� ÿ
Z t

0

Z 1

0

g�x; y� dB�y�
� �

dx: �25�

Theorem 3 was subsequently extended by Jandhyala and MacNeill (1989) to partial sums of
weighted regression residuals. Let r�t�; t 2 �0; 1� be a continuous function and de®ne sequences of
stochastic processes fy�r�fn �t�; t 2 �0; 1�g, n � 1; . . . by

sn1=2y�r�fn �t� � S
�r�
n�n;t� � �nt ÿ �nt��r

�nt� � 1

n

� �
�Yn�nt��1 ÿ Ŷn�nt��1�: �26�

Then, the following generalizes Theorem 3.

Theorem 4. Let the regressor functions fi�t�; t 2 �0; 1�, i � 0; . . . ; p ÿ 1 be continuously
di�erentiable on [0, 1]. Then, for r(t) also continuously di�erentiable on [0, 1], the sequences
of stochastic processes fy�r�fn �t�; t 2 �0; 1�g, n � 1; 2; . . . converges weakly to the Gaussian process
fB�r�p �t�; t 2 �0; 1�g de®ned by

B
�r�
p �t� �

Z t

0

r�x� dB�x� ÿ
Z 1

0

Z 1

0

r�y�g�x; y� dB�y�
� �

dx: �27�

Further, the covariance kernel K�r�p �s; t� of the limit process is given by

K
�r�
p �s; t� �

Z min�s;t�

0

r
2�x� dx ÿ

Z s

0

Z t

0

r�x�r�y�g�x; y� dx dy: �28�
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The following theorem of Jandhyala and MacNeill (1989) then establishes the asymptotic null
distributions of T6n and T

�i�
7n, respectively. In the theorem below, p(m) represents a weight

sequence.

Theorem 5. Let c(.) be a non-negative weight function such that
R 1
0 t�1 ÿ t�c�t� dt51. De®ne

the weight sequence fp�m�gnÿ1m�1 as

p�n ÿ m� �
Z �2m�1�=2n
�2mÿ1�=2n

c�t� dt:

Then, under the regularity conditions of Theorem 4.

sÿ2nÿ1T6n!d
Z 1

0

c�t�fB�f0�p �t�g2 dt � � � � �
Z 1

0

c�t�fB�fpÿ1�p �t�2 dt: �29�

As a special case.

sÿ2nÿ1T�i�7n!d
Z 1

0

c�t�fB�fi�p �t�g2 dt: �30�

Computing quantiles for the stochastic integrals involved in (29) and (30) can pose analytic
di�culties. Anderson and Darling (1952) developed a methodology for computing quantiles for
the CrameÂ r von-Mises type stochastic integrals in (29) and (30) when the underlying stochastic
process is a Brownian Bridge. The methodology involves identifying the sequence of eigenvalues
and the associated orthonormal functions flpn;f�t�png1n�1 satisfying the Fredholm equation

Z 1

0

fc�t�c�s�g1=2K�f�p �s; t�fpn�s� ds � lpnfpn�t�; n � 1; 2; . . . �31�

Then, the characteristic function of the stochastic integral
R 1
0 c�t�fB�f�p �t�g2 dt is given by:

F�f�p �s� �
Y1
n�1
f1 ÿ 2islpngÿ1=2: �32�

Numerical inversion of this characteristic function will then provide the necessary quantiles.
Assuming a Uniform prior �c�t� � 1�, MacNeill (1978a) computed the quantiles forR 1

0 fB
�f0�
p �t�g2 dt in the case of a pth order polynomial regression by analytically solving the

Fredholm equation (31). Jandhyala and MacNeill (1989) developed a general method of
analytically solving Fredholm equations and then computed quantiles for

R 1
0 fB

�f0�
p �t�g2 dt in the

case of a pth order harmonic regression. These analytical solutions are important contributions
to the development of change-point methods for regression models and the two analytical
solutions are brie¯y stated below.
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In the case of a pth order polynomial regression, the eigenvalues satisfying the Fredholm
equation (31) are found to be

lp;2nÿ1 �
1

4Z2
pÿ1;n

lp;2n �
1

4Z2
p;n

n � 1; 2; . . . ;

where Zp,n is the nth positive zero of the pth order Spherical Bessel function of the ®rst kind.
Now consider the case of ®tting a harmonic regression model of degree p to a set of data such

that

Ynj � b0 �
Xp
i�0
fbi cos 2pi�j=n� � bp�i2pi�j=n�g � ej; j � 1; . . . ; n: �33�

Under the model (33), assuming c�t� � 1, Jandhyala and MacNeill (1989) found flpng1n�1 that
satisfy the Fredholm equation (31) to be:

lpn � 1=4p2n2; n � p � 1; p � 2; . . .

and those satisfying the equation

tan
1

2
������
lpn

q0@ 1A � 1

4
������
lpn

q Xp
j�1

1

1 ÿ 4p2j2lpn

 !ÿ18<:
9=;; n � 1; 2; . . . :

Once the eigenvalues are found, quantiles for the stochastic integral are obtained by numerically
inverting the characteristic function applying Gaussian quadrature. For the case of testing for a
change in the intercept alone (i � 0), MacNeill (1978a) computed the quantiles for selected
values of p for a pth order polynomial regression and Jandhyala and MacNeill (1989) computed
the quantiles for selected values of p for a pth order harmonic regression.

Econometricians formulate the problem of dynamic stability of regression parameters in one of
the two following ways:

(i) Random Coe�cient Regression (RCR) models; and
(ii) Sequential Variation Regression (SVR) models.

Random coe�cient regression models are obtained by treating the vector of regression para-
meters as random. The SVR models are more general formulations of the RCR models in the
sense that RCR models are relevant only when data follow a strictly stationary time series,
whereas the time series associated with SVR models may also be non-stationary.
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Nabeya and Tanaka (1988) addressed the problem of testing for the constancy of regression
coe�cients in the context of random walk alternatives. The random walk model considered by
Nabeya and Tanaka (1988) is given by

yt � xtbt � z
0
tr � et;

bt � btÿ1 � ut; t � 1; 2; . . . ; �34�

where {yt} is a sequence of scalar observations, {xt} and {zt} are scalar and p� 1 non-stochastic,
®xed sequences respectively, {et} and {ut} are independent of each other and are i.i.d. with
E�et� � 0, E�e2t � � s2e 4 0, E�ut� � 0 and E�u2t � � s2u 5 0, bt starts with b0 which is assumed to be
either a known or unknown constant, and r is a p� 1 vector of unknown parameters. They have
then derived a locally best invariant (LBI) test statistic for testing the hypotheses:

H0 : d � s2u
s2e
� 0 against Ha : d4 0; �35�

under the normality assumption on {yt}.
The statistic derived by Nabeya and Tanaka (1988) was a quadratic form in regression

residuals. Jandhyala and MacNeill (1992) showed that the two-sided Bayes-type static derived
under change-point alternative and the LBI statistic derived under random walk alternative were
equivalent. Thus, they have established a dual relationship between change-point and random
walk formulations.

4. CHANGE-POINTS AT UNKNOWN TIMES UNDER SERIAL CORRELATIONS

The test statistics and their distribution theory derived thus far were under model formulations
that assume independence among observations. Such an assumption for time-series data might
be violated quite frequently. When independence is violated, the statistics derived thus far cannot
be applied until correlation structures have been accounted for in the derivations of the change-
detection statistics and their distribution theory. Tang and MacNeill (1993) tackled the problem
of testing for change-points when data are serially correlated. We ®rst consider their basic model.
Let fYn�j�gnj�1; n5 1 be a triangular array of dependent variables satisfying the regression model

Yn�j� �
Xp
i�0

bifi�j=n� � X�j�; �36�

where X�j�; j � 0; + 1; . . . is a zero mean, discrete time, stationary time series with covariance
function given by

R��� � EfX�n�X�n � ��g; j�j51:

If the covariance function is absolutely summable, i.e..

X1
��ÿ1

jR���j51; �37�
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then, the spectral density function.

f�l� � 1

2p

X
j�j51

e
ÿil�

R���; l 2 �ÿp; p� �38�

exists. The error process fX�j�gnj�1; n5 1 is invertible if the spectral density is positive, i.e..

f�l�5 a4 0; l 2 �ÿp; p�: �39�

The matrix formulation of model (36) is given by

Yn � Anbp � Xn;

where X0n � fX�1�;X�2�; . . . ;X�n�g is a portion of a realization of the stationary time series and
where the jth component of the design matrix is fi�j=n�. Then, Tang and MacNeill (1993) ®rst
established limit processes for sequences of stochastic processes de®ned by a stationary error
process. To state the result, we ®rst need some preliminary notation.

Let

SXj
�
Xj
i�1

X�i�

and de®ne another sequence of stochastic processes fyXn
�t�; t 2 �0; 1�g; n5 1 possessing

continuous sample paths by

n
1=2yXn

�t� � SX�nt�
� �nt ÿ �nt��X��nt� � 1�: �40�

We also need the following Brillinger condition on the covariants of the process {X(n)}. Let

Ck�1��1; . . . ; �k� � CumfX�n � �1�;X�n � �2�; . . . ;X�n � �k�;X�n�g:

Then, the Brillinger condition is given by:

jCk�1��1; �2; . . . ; �k�j5
LkYk

j�1
�1 � �2j �

�41�

for some ®nite Lk , k � 1; 2; . . . :
Then, Tang and MacNeill (1993) proved the following theorem.

Theorem 6. Let assumptions (39) and (41) hold. Then the sequence of stochastic processes
fyXn
�t�; t 2 �0; 1�g; n5 1 converges weakly to the Gaussian process fBX�t�; t 2 �0; 1�g given by:

BX�t� � f2pf�0�g1=2B�t�; �42�

where B(t) denotes the standard Brownian motion.
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One may now derive the residual process for regression residuals with stationary error
structure. For the model (36), de®ne partial sums of regression residuals fSfnjgnj�1; n5 1 where

Sfnj �
Xj
i�1
fYn�i� ÿ Ŷn�i�g:

De®ne sequences of stochastic processes fyfXn
�t�; t 2 �0; 1�g, possessing continuous sample paths

by

n
1=2yfXn

�t� � Sfn�nt� � �nt ÿ �nt��fY��nt� � 1� ÿ Ŷ��nt� � 1�g: �43�

De®ne bi-linear function g�s; t� � g0�s�Gÿ1g�t� where

G � lim n
ÿ1
A
0
nAn:

Then, Tang and MacNeill (1993) derived the limit processes for fyfXn
�t�; t 2 �0; 1�g; n5 1 by the

following theorem.

Theorem 7. Assume conditions (39) and (41) hold. Further, assume regressor functions fi�t�; i �
0; . . . ; p are continuously di�erentiable and linearly independent. Then, the sequence of
Stochastic processes fyfXn

�t�; t 2 �0; 1�g; n5 1 converges weakly to the Gaussian processes
fBfX�t�; t 2 �0; 1�g given by

BfX�t� � BX�t� ÿ
Z t

0

Z 1

0

g�x; y� dBX�y�
� �

dx: �44�

Furthermore, the covariance kernel kfX�s; t� is given by

kfX�s; t� � 2pf�0� min�s; t� ÿ
Z s

0

Z t

0

g�x; y� dx dy

� �
: �45�

Tang and MacNeill (1993) then suggested how Theorem 7 could be used to adjust large sample
distributional results for statistics which are de®ned in terms of partial sums of residuals so as to
account for serially correlated errors. Let F(.) be a continuous functional de®ned on C[a, b], the
space of continuous functions on the interval [a, b]. Furthermore, assume F(.) to be homo-
geneous of degree d; that is, if f 2 C�a; b� and k is a constant, then

F�kf� � k
d
F�f�: �46�

Also, let Fn(
.), n � 1; 2; . . . be a sequence of continuous functionals de®ned on C[a, b] such that

Fn��� ! F���. Then, for functions fn , n � 1; 2; . . . and f elements of C[a, b] such that fn! f
uniformly on [a, b], one obtains

k
d
Fn�fn� ! F�kf� � k

d
F�f�: �47�

The following theorem then follows.
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Theorem 8. If Fn(
.), n � 1; 2; . . . and F(.) are continuous functions on C[a, b] satisfying (47), then

for a 2 (0, 1).

P
FnfyfXn

���g
fR̂n�0�gd=2

4 za
2pf�0�Z p

ÿp
f�l� dl

8<:
9=;

d=2
8><>:

9>=>;! P�FfBf���g4 za� � a: �48�

The implication of Theorem 8 is that if distribution theory is available for the case of white noise
error structure, then (48) gives simple precise large sample adjustments to account for serial
correlation in the noise process. Tang andMacNeill (1993) discussed such adjustments for Bayes-
type change-detection statistics with serial correlations in the error structure. For example, the
statistic to test for change in the ith regression parameter bi is given earlier to be:

sÿ2nÿ1T�i�8n �
Xnÿ1
m�1

p�m� 1

a
���
n
p

Xn
k�m�1

fi�k=n��Yn�i� ÿ Ŷn�i��
( )2

: �49�

The above statistic has been derived under the white noise error structure. Now suppose the error
process is not white noise and that R(0) is estimated consistently by RÃ(0) which might be used in
place of s2. Then it follows from Theorem 8 that

sÿ2nÿ1T�i�8n!
d 2pf�0�Z p

ÿp
f�l� dl

Z 1

0

c�t�fB�fi��t�g2 dt �50�

where c(t) is a non-negative weight function such that
R 1
0 t�1 ÿ t�c�t�51.

Thus, the large sample e�ects of serial correlations on change-detection statistics can be
adjusted for precisely by multiplying the quantiles of distributions for the white noise by

2pf�0�Z p

ÿp
f�l� dl

8<:
9=;:

Tang and MacNeill (1993) further show that similar adjustments are applicable for maximum
likelihood based statistics also.

5. CHANGE-POINT MODELS WITH CONTINUITY CONSTRAINTS

The regression change-point models considered thus far have been unconstrained in that no
particular constraints about continuity or smoothness have been imposed on the nature of the
regression regimes at the change-point. However, imposing such constraints on regression
regimes may be called for in modeling certain data sets. Segmented polynomial models are
obtained by imposing the constraint that successive polynomials from one regime to another be
continuous at the change-points or joint points. Piecewise simple linear models are particular
cases of the more general segmented polynomial models. For example, Gallant and Fuller (1973)
discussed ®tting polynomial regression regimes constrained to continuity to data on boys' height/
weight ratio. Jandhyala and MacNeill (1997) derived Bayes-type statistics for testing one-sided
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changes in regression parameters under continuity constraints. They have also derived
asymptotic distribution theory for the derived statistics. The asymptotic theory involved deriving
limit processes de®ned by iterated partial sums of regression residuals. We shall ®rst state their
results on iterated partial sum residual processes and their properties and then discuss Bayes-type
statistics for models with continuity constraints.

Consider the standard regression model with regression functions fj(t), t 2 �0;1�; i � 0,
1; . . . ; p, by

Yni �
Xp
j�0

bjfj�i=n� � ei; i � 1; . . . ; n: �51�

Let r0 � �r1; . . . ; rn� be the vector of least squares regression residuals. For notational conven-
ience, let fS �ÿ1�pk gn be the sequence of residuals such that S

�ÿ1�
pk � rk, k � 1; . . . ; n. One then de®nes

the `th order iterated partial sum sequence fSpkgnk�0 by S
�`�
p0 � � 0 and

S
�`�
pk �

Xk
i�1

S
�`ÿ1�
pi ; k � 1; . . . ; n; �52�

where `may take one of the values f0; 1; . . .g. Then, for any ®xed `, de®ne sequences of stochastic
processes fy�`�pn �t�; t 2 �0; 1�g; n5 1, having continuous sample paths by

y�`�pn �t� � fsn`�1=2gÿ1fS�`�p�nt� � �nt ÿ �nt��S�`ÿ1�p�nt��1g; ` � 0; 1; . . . �53�

Jandhyala and MacNeill (1997) derived the limit processes for fy�`�pn �t�; t 2 �0; 1�g; n5 1, by the
following theorem.

Theorem 9. Let the regressor functions fj�t�; t 2 �0; 1�; j � 0; . . . ; p be continuously di�erentiable
on [0, 1]. Then, for any ®xed `, ` � 0; 1; . . ., the sequence of stochastic processes fy�`�pn �t�; t 2
�0; 1�g; n5 1 converges weakly to the Gaussian process fB�`�p �t�; t 2 �0; 1�g de®ned by

B
�`�
p �t� �

1

`0

Z t

0

�t ÿ x�` dB�x� ÿ
Z t

0

Z 1

0

g�x; y��t ÿ y�` dB�y�
� �

dx

� �
; �54�

where g(x, y) is the bi-linear function de®ned earlier. Furthermore, the covariance kernel
K�`�p �s; t�; s; t 2 �0; 1� is given by:

K
�`�
p �s; t� �

1

�`!�2
Z min�s;t�

0

�t ÿ x�l�s ÿ x�` dx ÿ
Z s

0

Z t

0

�t ÿ x�`�s ÿ y�`g�x; y� dy dx

� �
: �55�

The following theorem shows bridge type properties for fB�`�p �t�; t 2 �0; 1�g for all p5 `; ` �
1; 2; . . . for the case of polynomial regression models.

Theorem 10. Consider a pth order polynomial model such that fj�i=n� � �i=n�j, j � 0; . . . ; p. Then,

B
�`�
p �1� �

Z 1

0

B
�`ÿ1�
p �x� dx �a�e 0; for p5 `; ` � 1; 2; . . . : �56�
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It turns out that the above bridge-type property holds for ®nite samples also. Let S�`�p denote the
sum of the �` ÿ 1�th order iterated partial sum sequence such that S�`�p � S�`�pn � Sn

i�1S
�`ÿ1�
pi

,
` � 0; 1; 2; . . . : Then, the following theorem characterizes the properties of S�`�p , ` � 0; 1; . . . :

Theorem 11. For a pth order polynomial regression model, let S�`�p , ` � 0; 1; . . . denote the sums
of iterated partial sum sequences fS�`�pk g. Then, for any ®xed p.

S
�`�
p � 0; ` � 0; 1; . . . ; p: �57�

In order to discuss applications of the above results, consider a two-regime change-point
polynomial model constrained to continuity at the unknown change-point by:

Y � Xbbbbb �
Xp
j�1

djgmj � EEEEE; �58�

where m is the unknown change-point, d1; . . . ; dp represent the amounts of change in b1; . . . ; bp
and

g
0
mj � 0; . . . ; 0;

m � 1 ÿ m�
n

� �j

; . . . ;
�n ÿ m�

n

� �j
 !

:

The hypotheses considered for the one-sided test are:

H0 : d1 � 0; . . . ; dp � 0 against Ha : d1 4 0; . . . ; dp 4 0:

Jandhyala and MacNeill (1997) proved the following theorem which shows that the Bayes-type
statistic to test for H0 against HA is de®ned in terms of iterated partial sums of regression
residuals.

Theorem 12. Let T9n� p� be the Bayes-type statistic to test for the hypotheses in (59). Then, under a
uniform prior on the unknown change-point m, the Bayes-type statistic T9n� p� is de®ned in terms
of the iterated partial sums and is given by

�n ÿ 1�T9n� p� � S
� p�1�
p : �60�

The asymptotic distribution of the above statistic may be obtained as a special case of Theorem 9
and is given by the following theorem.

Theorem 13. Let V� p�1�p be the variance of B� p�1�p �1� and let ŝ2 be a consistent estimator for the
unknown error variance s2. Then, asymptotically, the null distribution of the statistic S� p�1�p has
the distribution given by:

ŝnp�3=2
�������������������
V
� p�1�
p �1�

q� �ÿ1
S
� p�1�
p !d N�0; 1�: �61�
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6. SPATIAL ANALOG OF THE CHANGE-POINT PROBLEM

Analogues of the change-point problem exist in spatial and in spatio-temporal contexts. A model
characterized by a single set of parameters may be suitable for describing an entire set of spatial
data. On the other hand it may be that boundaries separate the region under consideration into
sub-regions with data for each sub-region characterized by its own parameters. Furthermore, the
location of possible boundaries may not be speci®ed. Hence, appropriate statistical methods are
required to test for the presence of such boundaries. If the presence of a boundary is detected,
then appropriate statistical methods are required to identify its location. Examples of change-
detection for spatial data include, among others, areas such as remote sensing, environmental
monitoring where boundaries need to be identi®ed for snow cover during winter, and the
boundary of the site to be cleared of toxic waste sites.

Carlstein and Krishnamoorthy (1992) considered the problem of estimating the location of an
unknown boundary given that the boundary is present. MacNeill and Jandhyala (1993)
formulated the problem of testing for boundaries in spatial data. Extensions of these formula-
tions to include heteroscedasticity in spatial data have been considered by MacNeill et al. (1994).
Here, we shall brie¯y describe the modeling as carried out in MacNeill and Jandhyala (1993).
Consider a rectangular region R on the unit square and assume that there are n2 gauge points (i, j)
in R. Let Yij denote the observation taken at the gauge located at (i, j) and assume thatm` gauges
are located in A`. For simplicity, we assume that the observations are independent. Let
fk��; ��; k � 0; . . . ; p be a set of bivariate regressor functions, and let eij; i; j � 1; . . . ; n be a set of
independent N(0, s2) variables. Let Yij satisfy the spatial regression model given by:

Yij �
Xp
k�0

bkfk�t1i; t2j� � eij: �62�

The model (62) may be written in matrix form as

Y � Xbbbbb � EEEEE �stacked�;

where bbbbb � �b0; . . . ; bp�0 and X the design matrix. As n!1; 1=s2�X0X� ! G, with the (i, j)th
component given by Z 1

0

Z 1

0

fi�t1; t2�fj�t1; t2� dt2; dt2:

A Bayes-type statistic for detecting boundaries in the spatial data may be derived to be

T10n �
Xn
`�1

Xn
k�1

Xk
`�1

X̀
j�1

rij

 !2

�63�

when rij is the (ij)th least squares residual. Then, it may be shown that under H0

1

n4s2
T10n!

Z 1

0

Z 1

0

B
2
f �t1; t2� dt1 dt2; �64�
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where fBf�t1; t2�; �t1; t2� 2 �0; 1� � �0; 1�g is the limit process for partial sums on spatial residuals
and is given by:

Bf�t1; t2� � B�t1; t2� ÿ
Z t1

0

Z t2

0

Z 1

0

Z 1

0

f
0�s1; s2�Gÿ1f�s01; s02� dB�s01; s02� ds1 ds2: �65�

The covariance kernel of Bf�t1; t2� is:

kf�t1; t2; t01; t02� � min�t1; t01�min�t2; t02� ÿ
Z t1

0

Z t2

0

Z t0
1

0

Z t0
2

0

g�s1; s2; u; u2� du2 du1 ds2 ds1: �66�

Computing quantiles for the stochastic integral in (64) is quite complicated. The expected value
and variance can, however, be easily obtained from the covariance kernel in (66).

When the existence of a boundary is identi®ed, the next problem to be considered is estimation
of the boundary location. MacNeill and Jandhyala (1993) provide a method for estimating the
boundary location. Let B be a collection of points (i/n, j/n), on the grid and let �B be the
complimentary set. Let rij be the residual associated with (i/n, j/n). Then, let

S
2
B �

X
�i;j�2B

r
2
ij;

S
2
�B �

X
�i;j�2 �B

r
2
ij:

The estimated boundary B* is obtained as that boundary B, that minimizes

S
2
B �B � S

2
B � S

2
�B: �67�

That is:

S
2
B* �B* � min

B
S
2
B �B: �68�

For even moderate sized n, the number of possible boundaries becomes unmanageably large. To
reduce the number of boundaries to be considered in the above minimization, one makes
appropriate assumptions regarding the smoothness and continuity of the boundary.

Substantial extensions of these spatial methods may be found in L. Xie's Ph.D. thesis written
under the supervision of Ian MacNeill.
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